Nonlinear Beam Dynamics

If we use s as the independent variable, the Hamiltonian is pz:

(1)
\begin{align} H=1+\delta -(1+hx)\frac{A_s}{B\rho}-(1+hx)\sqrt{(1+\delta)^2-p_x^2-p_y^2} \end{align}

Expanding and splitting, we get $H=H_1+H_2$

(2)
\begin{align} H_1 = (1+hx)\frac{p_x^2+p_y^2}{2(1+\delta)} \end{align}
(3)
\begin{align} H_2 = -(1+hx)\frac{A_s}{B\rho}-(1+\delta)hx \end{align}

Begining of a wikibook is here

One important concept is that of normal form. Here is the wikipedia article for the concept in Mathematics. It has a somewhat specialized meaning in beam dynamics.

From a computational perspective, one uses it to compute tune with amplitude. It also gives a transformation to coordinates in which the motion is just circles in the phase planes. These transformations can fail near resonances, and associated terms can be found called "resonance driving terms". Thus, one wants to compute tune shift with amplitude and resonance driving terms.

We may also compute the tune from the tracking.
For example, we have the function:
[nux,nuz]=atnuampl(ring,ampl,xz,plt)

This uses:
findtune(reshape(p1(1,:),nampl,[])',3),siza);

Here,
p1=ringpass(ring,p0,128);

i.e. it's the result of tracking.

Here is the Matlab routine for computing tune shift with amplitude due to sexutpoles.

—-

[lindat,nu,xi]=atlinopt(ring,0,1:length(ring));

betaxz = cat(1, lindat.beta);
bx = betaxz(:,1);
bz = betaxz(:,2);

mu = cat(1, lindat.mu);
mux = mu(:,1);
muz = mu(:,2);

muxT= pi*nu(1);
muzT= pi*nu(2);

sindex=findcells(ring,'PolynomB');
b3vals=zeros(1,length(sindex));
for q=1:length(sindex)
L=ring{sindex(q)}.Length;
b3vals(q)= L*ring{sindex(q)}.PolynomB(3);
end

%now we need to add up dnudj contribution from the sextupoles.
% it involves a double sum over pairs of sextupoles.

xdx = 0;
xdz = 0;
zdz = 0;

sx = sin(muxT);
s3x = sin(3*muxT);
sxp2z = sin(muxT + 2 * muzT);
sxm2z = sin(muxT - 2*muzT);

for s=1:length(sindex)
for t=1:length(sindex)
si = sindex(s);
ti = sindex(t);
b = b3vals(s)*b3vals(t);
c = sqrt(bx(si)*bx(ti));

cx = cos(abs(mux(si) - mux(ti)) - muxT);
c3x= cos(3*(abs(mux(si) - mux(ti)) - muxT));
cxp2z = cos(abs(mux(si) - mux(ti)) + 2*abs((muz(si)-muz(ti))) - (muxT + 2* muzT));
cxm2z = cos(abs(mux(si) - mux(ti)) - 2*abs((muz(si)-muz(ti))) - (muxT - 2* muzT));

xdx = xdx + b * c ^ 3 * (3*cx/sx + c3x/s3x);
xdz = xdz + b * c * bz(si) * (-4 * bx(ti) * cx / sx + 2 * bz(ti) * cxp2z / sxp2z - 2 * bz(ti) * cxm2z / sxm2z);
zdz = zdz + b * c * bz(si) * bz(ti) * (4 * cx / sx + cxp2z / sxp2z + cxm2z / sxm2z);

end
end

xdx = -sym*xdx/(32*pi)/1000;
xdz = -sym*xdz/(32*pi)/1000;
zdz = -sym*zdz/(32*pi)/1000;

Unless otherwise stated, the content of this page is licensed under Creative Commons Attribution-ShareAlike 3.0 License